
 Performance Optimization at Scale
Recent Experiences

Patrick H. Worley
Oak Ridge National Laboratory

Workshop on Performance Analysis of Extreme-Scale Systems and Applications
Los Alamos Computer Science Symposium

October 15, 2008
La Fonda Hotel

Santa Fe, New Mexico

2

•  The work described in this presentation was sponsored by the Atmospheric
 and Climate Research Division, the Fusion Energy Sciences Program, and
 the Office of Mathematical, Information, and Computational Sciences, all of
 the Office of Science, U.S. Department of Energy, under Contract No. DE
-AC05-00OR22725 with UT-Battelle, LLC.

•  These slides have been authored by a contractor of the U.S. Government
 under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
 Accordingly, the U.S. Government retains a nonexclusive, royalty-free
 license to publish or reproduce the published form of this contribution, or
 allow others to do so, for U.S. Government purposes.

•  This work used resources of the National Center for Computational
 Sciences at Oak Ridge National Laboratory, which is supported by the
 Office of Science of the Department of Energy under Contract DE
-AC05-00OR22725, of the Argonne Leadership Computing Facility at
 Argonne National Laboratory, which is supported by the Office of Science
 of the U.S. Department of Energy under Contract AC02-06CH1135, and of
 the National Energy Research Scientific Computing Center, which is
 supported by the Office of Science of the U.S. Department of Energy under
 Contract No. DE-AC02-05CH11231.

 Acknowledgements

3

1.  Application performance engineering and optimization targeting the
 tera-, peta-, and exa-scale:
a.  XGC-1 gyrokinetic turbulence “edge” code
b.  Community Atmosphere Model (CAM)

 focusing in particular on parallel algorithm design, evaluation, and
 implementation (both MPI and OpenMP).

2.  Performance evaluation of prototype petascale HPC systems:
a.  IBM BG/P
b.  Cray XT4 (quad-core)

 As both performance optimization and performance evaluation are
 important customers of performance analysis, my activities may be
 of interest to this audience.

 Recent Activities

4

•  For application code optimization, profile data (timers and PAPI
 counters) are collected and used to guide subsequent empirical
 experiments. Focus is less on “mining” performance data from a
 single run, and more on comparing data collected across multiple
 runs. Data may come from runs with different settings of existing
 runtime options or from manually modifying the code to, for
 example, better characterize a performance issue or evaluate an
 alternative approach.

•  For performance evaluation, microbenchmarks are used to
 characterize subsystem performance. These characterizations are
 then used to define and to interpret empirical experiments used in
 application benchmarking.

 Process

5

1.  Performance analysis and optimization “from the inside”, not
 treating a code as a black box

2.  Targeted experiments, collecting data to examine specific issues
 and modifying the code as a natural part of the process

3.  Many (short) experiments, as work through possible problems and
 possible solutions

4.  Identifying issues at large scale, but not working at scale except
 when necessary

Questions
-  Is this process feasible at scale?
-  Is it more or less feasible than a less hands-on approach to

 identify and address performance issues?
-  Are there alternatives that make more sense at scale?

 Process Characteristics

6

1.  Need benchmarks representative of goals of work, both code
 versions and problem specifications

2.  Need interactive sessions and/or fast turnaround for batch requests
3.  Need sufficient and predictable access to required computing

 resources, including large processor count runs
4.  Would like additional support for controlled experiments:

a.  Information on and/or better control of environment (including
 system software versions and default environment variables)

b.  Support for requesting specific configurations
c.  Global system performance data: where am I running, where

 are others running, what are they doing, and what shared
 resources are we competing for.

 Most of these are NOT technical issues, involving instead adequate
 support from application teams and from computing centers.

Practical Issues

7

1.  System Limitations, e.g.
a.  Limit on number and volume of “unexpected messages” when

 using MPI on the XT4
b.  Limit on number of MPI subcommunicators on BG/P
c.  Poor performance from MPI collectives, especially at scale
Note that all of these can be addressed via algorithm
modifications.

2.  Performance variability due to contention with other users
a.  Intrinsic system hotspots (e.g., file system)?
b.  Way system is run (e.g., allocation policy)?
More difficult to address? Simply try to recognize problem and try
again later? Complain?

3.  System failures (often beginning with degraded performance).

 Recent Performance Issues

8

4.  Explicitly unscalable algorithms, e.g.
a.  single reader/writer I/O
b.  (depending on file system) every process reads and writes
c.  master-controlled diagnostics
d.  undistributed data structures (replicated for “convenience”), and

 associated algorithms required to maintain the data structure
5.  Implicitly unscalable algorithms, e.g.

a.  certain types of load imbalances
b.  communication-intensive parallelization strategies, e.g.

 transpose-based algorithms

 4. and 5. are typically easy to diagnosis, but can be difficult to
 address.

 Recent Performance Issues

9

1.  Introduced logic to dump profile data periodically during run and
 visualize it in real-time or post-mortem, in order to identify
 performance variability.
-  Seemed like a good idea at the time. Its utility has yet to be

 proven as it is not being used in production runs yet.

 XGC-1

10

2.  Requested dedicated time to run experiments at scale (20,000
 processors) on the XT4 to provide performance data for use in a
 proposal, with a last minute twist:

 “I tried 16k cores a few times and they all crashed. 8k cores are
 fine. … If you get the emergency reservation, and the code
 doesn’t work, please try to debug it.” (from code developer)

-  The runs did abort when using 16K and 20K processes. I
 “quickly” tried 7 different modifications of MPI logic, each of
 which worked but with different performance. I didn’t achieve
 performance comparable to the original logic until the next
 day. Was given higher priority for a noninteractive run to
 collect final data.

 XGC-1

11

 The XGC-1 experiments were a mix of weak and strong scaling. XGC-1
 is a particle-in-cell code. The underlying grid size was fixed independent
 of the number of processors (strong scaling) and the number of particles
 assigned to each processor was fixed (weak scaling). The routine where
 the code was dying (SHIFT) identifies and moves particles that had left
 the regions assigned to the particular process. The original logic was

1.  determine where to send particles (allreduce + point-to-point)
2.  send all particles that need to go off process
3.  local rearrangement to fill holes generated by particles moving off

 process
4.  read in particles sent from other processors.

 The system was receiving more “unexpected messages” than it could
 handle, exhausting internal MPI buffer space. The memory allocated for
 unexpected messages can be set via an environment variable, but this
 is a fragile solution in my experience. There is also a hard limit
 determined by the total amount of memory available to a process.

 XGC-1: MPI problem

12

 The performance for the original code was good (until it failed), so
 performance bar was set high.

 Seconds
 processes main_loop shift (max, min, process 0)

Original: 8192 345 (50, 21, 26)
 16384 failed -
Fix 1: 8192 411 (132, 96, 108)
 16384 483 (202, 162, 180)
Fix 2: 16384 459 (177, 134, 148)
Fix 4: 16384 465 (184, 141, 156)
Fix 5: 16384 468 (180, 142, 155)
Fix 7: 8192 397 (113, 77, 81)
 16384 458 (170, 131, 143)
FINAL: 8192 350 (59, 25, 27)
 16384 356 (63, 26, 35)

 XGC-1: MPI problem fix

13

 Final algorithm:
1.  determine where to send particles (MPI_Alltoall OR MPI_Allreduce +

 point-to-point)
2.  post all receive requests, optionally sending handshaking messages to

 sources
3.  local rearrangement to fill holes generated by particles moving off

 process
4.  send all particles that need to go off process, optionally waiting for

 handshaking message (flow control)
5.  read in particles sent from other processors

 Default (reported in results) is to use MPI_Alltoall and flow control. Further
 MPI optimizations are possible, but it is unclear how much more
 performance improvement is possible.

 XGC-1: MPI problem fix

14

 (max, min) over processes
processes main_loop charge_comm PETSc_solve Shift
 256 345 (16, 6) (18, 17) (25, 20)
 512 336 (28, 6) (10, 9) (26, 18)
 1024 328 (33, 7) (9, 8) (28, 19)
 2048 330 (48, 7) (12, 11) (38, 20)
 4096 332 (69, 7) (18, 16) (50, 21)
 8192 344 (82, 8) (29, 26) (56, 24)
16384 356 (95, 15) (29, 27) (63, 26)

 These data (and others, not shown) indicate load imbalance in charge
 deposition routine and in computation leading into particle shift that
 increases with process count. PETSc solve is on fixed grid, so is solely
 MPI communication overhead as process count increases. Load
 imbalance is being addressed, but short term approach is to introduce
 OpenMP parallelism in order to decrease number of MPI processes.

 XGC-1: MPI overhead analysis

15

 OpenMP is used effectively in GTC, another particle code used by the
 fusion simulation community, and the expectation was that XGC-1
 would be similarly amenable to OpenMP parallelism. Reductions
 required splitting some loops, but introducing OpenMP was relatively
 straightforward. Performance was initially quite poor, with runtime
 increasing as a function of thread count for the worst case loops.

 Empirical experiments (e.g., restructuring loops) on small core counts
 indicated that all performance issues arose from working with arrays
 that were accessed via a pointer in a structure. Changing these to
 allocatable arrays within the structure improved performance
 somewhat, but the problem was not eliminated until the arrays were
 added as arguments to the relevant subroutines (and not accessed via
 the structure within the routines). Fortunately, this involved only a few
 arrays and only a few routines were affected. This modification also
 improved performance when not using OpenMP.

 XGC-1: OpenMP optimization

16

processes threads per process Main_loop charge_comm
 8192 1 336 (81, 9)
 2048 4 306 (48, 5)
16384 1 343 (81, 10)
 4096 4 310 (66, 6)

 where the same number of particles are assigned to each thread.
 The OpenMP parallel implementation is not yet mature, but getting

 reasonable performance improvement. Next steps:
1.  Load imbalance: For 16384 processes, 22% variation in number of

 particles. For 4096 processes, less than 2% variation. So particle
 allocation imbalance is only part of the computational load imbalance.
 Need to understand (and eliminate?) source of load imbalance.

2.  OpenMP does not speed up I/O currently. Performance in diagnostic
 routines is partially a function of the number of particles per process
 (not thread), which is 4X larger when using OpenMP. ADIOS
 asynchronous I/O may make this unimportant.

 XGC-1: Current Performance

17

(Note: N == horizontal grid size, P == number of MPI processes.)
1.  Fast reproducible global sum algorithm

–  Replaced “master computes” algorithm with distributed algorithm,
reducing memory and computational complexity from O(N) to
O(N/P). Reduced time from 4% of total execution time for large
benchmark on 1664 XT processors to ~0.1% (50 times faster).

2.  Determination of amount of memory needed to gather distributed data
structure into master

–  Replaced O(PN) algorithm by O(N) algorithm. Reduced time from
20% of total execution time for large benchmark on 1024 BG/P
processors to .03% (~1000 times faster).

3.  Determination of whether distributed data structure has haloes
–  Replaced O(NlogN) algorithm executed each timestep with a single

call during initialization. Reduced total execution time for large
benchmark on 1024 BG/P processors by 3%.
All identified using profile data. Solutions based on complexity

analyses and introduction of alternative algorithms.

 Community Atmosphere Model

18

4.  Identifying and eliminating unnecessary algorithmic restrictions on
 scalability:

a.  Limitations in one phase of the code need not limit another phase
b.  Identifying other work that can be computed simultaneous to a

 phase with limited parallelism (and modifying code to support this
 functional parallelism)

-  Issue: For certain problem instances, when more MPI processes
 are active in one phase of the code than in another, the cost of
 MPI communication between the phases increases significantly
 (on IBM BG/P, Cray XT4, and ATLAS infiniband cluster at LLNL).
 For example, on IBM BG/P: small problem (96x144x30) but with
 full atmospheric chemistry (108 tracers), pure MPI, 480 processes
 in “phase 1”, process 0 data:

 # of “phase 2” processes 480 1536
 Main_loop 2659 secs. 2933 (slower!)
 phase 2 to phase 1 103 secs. 1586 (> 10X slower!)
 phase 1 to phase 2 32 secs. 56

 Community Atmosphere Model

19

 Different domain decompositions are used in the two phases, and the
MPI communication between phases is essentially a transpose. The
original algorithm was as follows:
1.  Prepost all receive requests (using MPI_IRECV)
2.  Send all data (using MPI_ISEND)
3.  Wait for receive requests to complete
4.  Wait for send request to complete

 Upon closer examination of the code, we identified two possible
sources for performance degradation:
-  The ordering of the sends for all processes was to send to process

0, 1, 2, … thus maximizing the potential for contention.
-  In one direction, some processes are only sending, not receiving, so

the preposted receives may not be posted early enough to be
effective.

 CAM: MPI scaling problem

20

 To diagnose (and ultimately fix) the communication problem:
1.  A number of runtime options were introduced:

a.  choice of MPI_SEND or MPI_ISEND
b.  flow control (sending handshaking messages after preposting

receive requests; not sending data until receive handshake;
using MPI_IRSEND or MPI_RSEND)

c.  limit on maximum number of nonblocking MPI requests
d.  Choice of MPI_ALLTOALLV or point-to-point implementation

2.  a dimensional exchange ordering of the send/receive requests was
introduced for the point-to-point implementation, to eliminate the hot
spots.

 Current default is point-to-point, MPI_SEND, flow control, with no limit
on number of nonblocking MPI requests. This performances reasonably
well across all scenarios that we have investigated.

 CAM: MPI scaling problem fix

21

Results using “final solution” (same benchmark problem)
•  BG/P: 256 MPI processes in phase 1, 1024 MPI processes in phase 2
 original: 6.2 simulated years per day (SYPD)
 new point-to-point: 9.2 SYPD
 MPI_ALLTOALLV: 9.7 SYPD
 (Remember, only difference is in tranpose algorithm.)

 MPI_ALLTOALLV is not optimal on all platforms, however: (same
benchmark problem, but utilizing same parallelism in both phases)

•  IBM BGP, 480 MPI processes, 4 OpenMP threads per process
 new point-to-point: 7.2 SYPD
 MPI_ALLTOALLV: 7.5 SYPD
•  Cray XT4, 480 MPI processes, 4 OpenMP threads per process
 point-to-point: 21.6 SYPD
 MPI_ALLTOALLV: 7.6 SYPD

 CAM: MPI scaling problem fix

22

 In CAM benchmarking, have documented as yet undiagnosed
performance variability, but am assuming that it is due to interference
from other users. This was an extreme case, but is happens often
enough that I always try to “babysit” my benchmark runs.
-  256 MPI processes, 4 OpenMP threads per process
-  Small problem (96x144x30), no atmospheric chemistry
-  First run

•  7.4 SYPD
•  phase 2 to phase 1 transpose: 82 seconds

-  Second run (separate qsub later in the same day)
•  64.4 SYPD
•  Phase 2 to phase 1 transpose: 5 seconds

 How diagnose? Systems administrators were not able to identify
anything unusual in their logs.

 CAM: XT4 Performance Variability

23

1.  (Still) finding algorithmic limitations to scalability that are easily
 identified with relatively primitive tools when can run empirical
 experiments at an appropriate scale. Developing and evaluating
 alternative approaches often requires experimentation at scale.

2.  Applications can easily consume local system resources as process
 count grows. Applications need to be aware of and control resource
 demands (e.g., MPI flow control).

3.  “Defensive Programming” strategies continue to be important, and the
 importance of compile and runtime tuning options will likely increase
 as the optimal algorithms and implementations vary with platform,
 problem instance, core count, …

4.  An experiment-centric approach to performance optimization appears
 to work even at scale, if ready access to the required resources is
 available. However, global system performance data can be important
 when interpreting individual application performance data.

 Conclusions

